
COMP2111 Week 3
Term 1, 2024

Recursion and induction

1

Summary of topics

Recursion

Recursive Data Types

Induction

Structural Induction

2

Summary of topics

Recursion

Recursive Data Types

Induction

Structural Induction

3

Recursion

Fundamental concept in Computer Science

Recursion in algorithms: Solving problems by reducing to
smaller cases

Factorial
Towers of Hanoi
Mergesort, Quicksort

Recursion in data structures: Finite definitions of arbitrarily
large objects

Natural numbers
Words
Linked lists
Formulas
Binary trees

Analysis of recursion: Proving properties

Recursive sequences (e.g. Fibonacci sequence)
Structural induction

4

Recursion

Fundamental concept in Computer Science

Recursion in algorithms: Solving problems by reducing to
smaller cases

Factorial
Towers of Hanoi
Mergesort, Quicksort

Recursion in data structures: Finite definitions of arbitrarily
large objects

Natural numbers
Words
Linked lists
Formulas
Binary trees

Analysis of recursion: Proving properties

Recursive sequences (e.g. Fibonacci sequence)
Structural induction

5

Recursion

Fundamental concept in Computer Science

Recursion in algorithms: Solving problems by reducing to
smaller cases

Factorial
Towers of Hanoi
Mergesort, Quicksort

Recursion in data structures: Finite definitions of arbitrarily
large objects

Natural numbers
Words
Linked lists
Formulas
Binary trees

Analysis of recursion: Proving properties

Recursive sequences (e.g. Fibonacci sequence)
Structural induction

6

Recursion

A recursive definition has base cases (B) and recursive cases (R):

(B) 0! = 1
(R) (n + 1)! = (n + 1) · n!

fact(n):
(B) if(n = 0): 1
(R) else: n ∗ fact(n − 1)

Factorial is defined in terms of smaller instances of factorial.

Question

Why do we need base cases in programming?
Why do we need them in maths?

7

Recursion

A recursive definition has base cases (B) and recursive cases (R):

(B) 0! = 1
(R) (n + 1)! = (n + 1) · n!

fact(n):
(B) if(n = 0): 1
(R) else: n ∗ fact(n − 1)

Factorial is defined in terms of smaller instances of factorial.

Question

Why do we need base cases in programming?
Why do we need them in maths?

8

Example: Towers of Hanoi

1 There are 3 towers (pegs).

2 n disks of decreasing size are placed on the first tower.

3 Every move, you take the top disk from one peg and put it on
top of another peg.

4 You win when all disks are on the middle tower.

5 Larger disks cannot be placed on of smaller disks.

The last tower can be used to temporarily hold disks.

9

Example: Towers of Hanoi

10

Example: Towers of Hanoi

11

Example: Towers of Hanoi

12

Example: Towers of Hanoi

13

Example: Towers of Hanoi

14

Example: Towers of Hanoi

15

Example: Towers of Hanoi

16

Example: Towers of Hanoi

17

Example: Towers of Hanoi

18

Example: Towers of Hanoi

19

Example: Towers of Hanoi

20

Example: Towers of Hanoi

21

Summary of topics

Recursion

Recursive Data Types

Induction

Structural Induction

22

Example: Natural numbers

A natural number is either 0 (B) or one more than a natural
number (R).

Formally:

(B) 0 ∈ N
(R) If n ∈ N then (n + 1) ∈ N

This is an inductive definition of N (aka a recursive definition):
N contains everything that can be constructed by finitely many
applications of (B) and (R), and nothing else.

23

Example: Fibonacci numbers

The Fibonacci sequence starts 0, 1, 1, 2, 3, . . . where, after 0, 1,
each term is the sum of the previous two terms.

Formally, the set of Fibonacci numbers: F = {Fn : n ∈ N}, where
the n-th Fibonacci number Fn is defined as:

(B) F0 = 0,

(B) F1 = 1,

(I) Fn = Fn−1 + Fn−2

NB

Could also define the Fibonacci sequence as a function
fib : N→ F. Choice of perspective depends on what structure you
view as your base object (ground type).

24

Example: Linked lists

Recall: A linked list is zero or more linked list nodes:

head

· · · ⊥

In C:

struct node{
int data;

struct node *next;

}

25

Example: Linked lists

Recall: A linked list is zero or more linked list nodes:

head

· · · ⊥

In C:

struct node{
int data;

struct node *next;

}

26

Example: Linked lists

We can view the linked list structure abstractly. A linked list is
either:

(B) an empty list, or

(R) an ordered pair (Data, List).

27

Example: Words over Σ

A word over an alphabet Σ is either λ (B) or a symbol from Σ
followed by a word (R).

Formal definition of Σ∗:

(B) λ ∈ Σ∗

(R) If w ∈ Σ∗ then aw ∈ Σ∗ for all a ∈ Σ

NB

This matches the recursive definition of a Linked List data type.

28

Example: Propositional formulas

A well-formed formula (wff) over a set of propositional variables,
Prop is defined as:

(B) > is a wff

(B) ⊥ is a wff

(B) p is a wff for all p ∈ Prop

(R) If ϕ is a wff then ¬ϕ is a wff

(R) If ϕ and ψ are wffs then:

(ϕ ∧ ψ),
(ϕ ∨ ψ),
(ϕ→ ψ), and
(ϕ↔ ψ) are wffs.

29

Programming over recursive datatypes

Recursive datatypes make recursive programming/functions easy.

Example

The factorial function:

fact(n):
(B) if(n = 0): 1
(R) else: n ∗ fact(n − 1)

30

Programming over recursive datatypes

Recursive datatypes make recursive programming/functions easy.

Example

Summing the first n natural numbers:

sum(n):
(B) if(n = 0): 0
(R) else: n + sum(n − 1)

31

Programming over recursive datatypes

Recursive datatypes make recursive programming/functions easy.

Example

Concatenation of words (defining wv):

For all w , v ∈ Σ∗ and a ∈ Σ :
(B) λv = v
(R) (aw)v = a(wv)

32

Programming over recursive datatypes

Recursive datatypes make recursive programming/functions easy.

Example

Length of words:

(B) length(λ) = 0
(R) length(aw) = 1 + length(w)

33

Programming over recursive datatypes

Recursive datatypes make recursive programming/functions easy.

Example

“Evaluation” of a propositional formula

34

Summary of topics

Recursion

Recursive Data Types

Induction

Structural Induction

35

Recursive datatypes
Describe arbitrarily large objects in a finite way

Recursive functions
Define behaviour for these objects in a finite way

Induction
Reason about these objects in a finite way

36

Inductive Reasoning

Suppose we would like to reach a conclusion of the form
P(x) for all x (of some type)

Inductive reasoning (as understood in philosophy) proceeds from
examples.
E.g. From “This swan is white, that swan is white, in fact every
swan I have seen so far is white”
Conclude: “Every Swan is white”

NB

This may be a good way to discover hypotheses.
But it is not a valid principle of reasoning!

Mathematical induction is a variant that is valid.

37

Inductive Reasoning

Suppose we would like to reach a conclusion of the form
P(x) for all x (of some type)

Inductive reasoning (as understood in philosophy) proceeds from
examples.
E.g. From “This swan is white, that swan is white, in fact every
swan I have seen so far is white”
Conclude: “Every Swan is white”

NB

This may be a good way to discover hypotheses.
But it is not a valid principle of reasoning!

Mathematical induction is a variant that is valid.

38

Mathematical Induction

Mathematical Induction is based not just on a set of examples, but
also a rule for deriving new cases of P(x) from cases where P is
known to hold.
General structure of reasoning by mathematical induction:

Base Case (B): P(a1),P(a2), . . . ,P(an) for some small set of
examples a1 . . . an (often n = 1)
Inductive Step (I): A general rule showing that if P(x) holds for
some cases x = x1, . . . , xk then P(y) holds for some new case y ,
constructed in some way from x1, . . . , xk .

Conclusion: By starting with a1 . . . an and repeatedly applying (I),
we can construct all values in the domain.

39

Basic induction

Basic induction is this principle applied to the natural numbers.

Goal: Show P(n) holds for all n ∈ N.

Approach: Show that:

Base case (B): P(0) holds; and

Inductive case (I): If P(k) holds then P(k + 1) holds.

40

Example
Recall the recursive program:

Example

Summing the first n natural numbers:

sum(n):
if(n = 0): 0
else: n + sum(n − 1)

Another attempt:

Example

sum2(n):
return n ∗ (n + 1)/2

Induction proof guarantees that these programs will behave the
same.41

Example
Let P(n) be the proposition that:

P(n) :
n∑

i=0

i =
n(n + 1)

2
.

We will show that P(n) holds for all n ∈ N by induction on n.

Proof.

(B) P(0), i.e.
0∑

i=0

i =
0(0 + 1)

2

(I) ∀k ≥ 0 (P(k)→ P(k + 1)), i.e.

k∑
i=0

i =
k(k + 1)

2
→

k+1∑
i=0

i =
(k + 1)(k + 2)

2

(proof?)

42

Example
Let P(n) be the proposition that:

P(n) :
n∑

i=0

i =
n(n + 1)

2
.

We will show that P(n) holds for all n ∈ N by induction on n.

Proof.

(B) P(0), i.e.
0∑

i=0

i =
0(0 + 1)

2

(I) ∀k ≥ 0 (P(k)→ P(k + 1)), i.e.

k∑
i=0

i =
k(k + 1)

2
→

k+1∑
i=0

i =
(k + 1)(k + 2)

2

(proof?)

43

Example
Let P(n) be the proposition that:

P(n) :
n∑

i=0

i =
n(n + 1)

2
.

We will show that P(n) holds for all n ∈ N by induction on n.

Proof.

(B) P(0), i.e.
0∑

i=0

i =
0(0 + 1)

2

(I) ∀k ≥ 0 (P(k)→ P(k + 1)), i.e.

k∑
i=0

i =
k(k + 1)

2
→

k+1∑
i=0

i =
(k + 1)(k + 2)

2

(proof?)44

Example (cont’d)

Proof.

Inductive step (I):

k+1∑
i=0

i =

(
k∑

i=0

i

)
+ (k + 1)

=
k(k + 1)

2
+ (k + 1) (by the inductive hypothesis)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

45

Variations

1 Induction from m upwards

2 Induction steps >1

3 Strong induction

4 Backward induction

5 Structural induction

46

Induction From m Upwards

If
(B) P(m)
(I) ∀k ≥ m (P(k)→ P(k + 1))
then
(C) ∀n ≥ m (P(n))

47

Example

Theorem. For all n ≥ 1, the number 8n − 2n is divisible by 6.

(B) 81 − 21 is divisible by 6
(I) if 8k − 2k is divisible by 6, then so is 8k+1 − 2k+1, for all k ≥ 1

Prove (I) using the “trick” to rewrite 8k+1 as 8 · (8k − 2k + 2k)
which allows you to apply the IH on 8k − 2k

48

Induction Steps ` > 1

If
(B) P(m)
(I) P(k)→ P(k + `) for all k ≥ m
then
(C) P(n) for every `’th n ≥ m

49

Example

Every 4th Fibonacci number is divisible by 3.

(B) F4 = 3 is divisible by 3
(I) if 3 | Fk , then 3 | Fk+4, for all k ≥ 4

Prove (I) by rewriting Fk+4 in such a way
that you can apply the IH on Fk

50

Strong Induction

This is a version in which the inductive hypothesis is stronger.
Rather than using the fact that P(k) holds for a single value, we
use all values up to k.

If
(B) P(m)
(I) [P(m) ∧ P(m + 1) ∧ . . . ∧ P(k)]→ P(k + 1) for all k ≥ m
then
(C) P(n), for all n ≥ m

51

Example

Claim: All integers ≥ 2 can be written as a product of primes.

(B) 2 is a product of primes
(I) If all x with 2 ≤ x ≤ k can be written as a product of primes,

then k + 1 can be written as a product of primes, for all k ≥ 2

Proof for (I)?

52

Negative Integers, Backward Induction
NB

Induction can be conducted over any subset of Z with least
element. Thus m can be negative; eg. base case m = −106.

NB

One can apply induction in the ‘opposite’ direction
p(m)→ p(m − 1). It means considering the integers with the
opposite ordering where the next number after n is n − 1. Such
induction would be used to prove some p(n) for all n ≤ m.

NB

Sometimes one needs to reason about all integers Z. This requires
two separate simple induction proofs: one for N, another for −N.
They both would start from some initial values, which could be the
same, e.g. zero. Then the first proof would proceed through
positive integers; the second proof through negative integers.

53

Summary of topics

Recursion

Recursive Data Types

Induction

Structural Induction

54

Structural Induction

Basic induction allows us to prove properties for all natural
numbers. The induction scheme (layout) uses the recursive
definition of N.

(B) 0 ∈ N
(R) If n ∈ N then

(n + 1) ∈ N

(B) P(0)

(I) P(k)→
P(k + 1).

NB

Every clause in the induction principle is there because of a
similar-looking clause in the (recursive) definition!

55

Structural Induction

Basic induction allows us to prove properties for all natural
numbers. The induction scheme (layout) uses the recursive
definition of N.

(B) 0 ∈ N
(R) If n ∈ N then

(n + 1) ∈ N

(B) P(0)

(I) P(k)→
P(k + 1).

NB

Every clause in the induction principle is there because of a
similar-looking clause in the (recursive) definition!

56

The same connection between recursive definition and induction
principle applies not just to N, but to any well-founded strict
poset.

The basic approach is always the same. To prove ∀x .P(x), we
show:

(B) P holds for all minimal objects

(I) If P holds for all predecessors of x , then P(x).

57

Strict poset

A strict poset is a pair (S ,≺) consisting of a set S and a relation
≺⊆ S × S such that ≺ is anti-reflexive, anti-symmetric and
transitive.

Example

(N, <) is a strict poset.

Example

(N,≤) is a non-strict poset. (why?)

A (non-strict) partial order is reflexive, anti-symmetric and
transitive.

58

Well-founded?
A strict poset (S , <) is well-founded if there are no infinitely
descending chains:

· · · < rk+2 < rk+1 < rk

Example

(N, <) is well-founded: every chain starting from a number n ends
in 0 after finitely many steps.

Example

(Z, <) is not well-founded (why?)

Example

(R+, <) is not well-founded (why?)

59

Example: Induction on Σ∗

Recall definition of Σ∗:

λ ∈ Σ∗

If w ∈ Σ∗ then aw ∈ Σ∗ for all a ∈ Σ

Structural induction on Σ∗:

Goal: Show P(w) holds for all w ∈ Σ∗.

Approach: Show that:

Base case (B): P(λ) holds; and

Inductive case (I): If P(w) holds then P(aw) holds for all
a ∈ Σ.

60

Example: Induction on Σ∗

Recall:

Formal definition of Σ∗:

λ ∈ Σ∗

If w ∈ Σ∗ then aw ∈ Σ∗ for all a ∈ Σ

Formal definition of concatenation:

(concat.B) λv = v
(concat.I) (aw)v = a(wv)

Formal definition of length:

(length.B) length(λ) = 0
(length.I) length(aw) = 1 + length(w)

Prove:

length(wv) = length(w) + length(v)

61

Example: Induction on Σ∗

Recall:

Formal definition of Σ∗:

λ ∈ Σ∗

If w ∈ Σ∗ then aw ∈ Σ∗ for all a ∈ Σ

Formal definition of concatenation:

(concat.B) λv = v
(concat.I) (aw)v = a(wv)

Formal definition of length:

(length.B) length(λ) = 0
(length.I) length(aw) = 1 + length(w)

Prove:

length(wv) = length(w) + length(v)

62

Example: Induction on Σ∗

Let P(w) be the proposition that, for all v ∈ Σ∗:

length(wv) = length(w) + length(v).

We will show that P(w) holds for all w ∈ Σ∗ by structural
induction on w .

Proof:

Base case (w = λ):

length(λv) =

length(v) (concat.B)
= 0 + length(v)
= length(w) + length(v) (length.B)

63

Example: Induction on Σ∗

Let P(w) be the proposition that, for all v ∈ Σ∗:

length(wv) = length(w) + length(v).

We will show that P(w) holds for all w ∈ Σ∗ by structural
induction on w .

Proof:
Base case (w = λ):

length(λv) =

length(v) (concat.B)
= 0 + length(v)
= length(w) + length(v) (length.B)

64

Example: Induction on Σ∗

Let P(w) be the proposition that, for all v ∈ Σ∗:

length(wv) = length(w) + length(v).

We will show that P(w) holds for all w ∈ Σ∗ by structural
induction on w .

Proof:
Base case (w = λ):

length(λv) = length(v) (concat.B)

= 0 + length(v)
= length(w) + length(v) (length.B)

65

Example: Induction on Σ∗

Let P(w) be the proposition that, for all v ∈ Σ∗:

length(wv) = length(w) + length(v).

We will show that P(w) holds for all w ∈ Σ∗ by structural
induction on w .

Proof:
Base case (w = λ):

length(λv) = length(v) (concat.B)
= 0 + length(v)

= length(w) + length(v) (length.B)

66

Example: Induction on Σ∗

Let P(w) be the proposition that, for all v ∈ Σ∗:

length(wv) = length(w) + length(v).

We will show that P(w) holds for all w ∈ Σ∗ by structural
induction on w .

Proof:
Base case (w = λ):

length(λv) = length(v) (concat.B)
= 0 + length(v)
= length(w) + length(v) (length.B)

67

Example: Induction on Σ∗

Proof cont’d:
Inductive case (w = aw ′): Assume that P(w ′) holds. That is, for
all v ∈ Σ∗:

(IH): length(w ′v) = length(w ′) + length(v).

Then, for all a ∈ Σ, we have:

length((aw ′)v) =

length(a(w ′v)) (concat.I)
= 1 + length(w ′v) (length.I)
= 1 + length(w ′) + length(v) (IH)
= length(aw ′) + length(v) (length.I)

So P(aw ′) holds.

We have P(λ) and for all w ′ ∈ Σ∗ and a ∈ Σ: P(w ′)→ P(aw ′).
Hence P(w) holds for all w ∈ Σ∗.

68

Example: Induction on Σ∗

Proof cont’d:
Inductive case (w = aw ′): Assume that P(w ′) holds. That is, for
all v ∈ Σ∗:

(IH): length(w ′v) = length(w ′) + length(v).

Then, for all a ∈ Σ, we have:

length((aw ′)v) = length(a(w ′v)) (concat.I)

= 1 + length(w ′v) (length.I)
= 1 + length(w ′) + length(v) (IH)
= length(aw ′) + length(v) (length.I)

So P(aw ′) holds.

We have P(λ) and for all w ′ ∈ Σ∗ and a ∈ Σ: P(w ′)→ P(aw ′).
Hence P(w) holds for all w ∈ Σ∗.

69

Example: Induction on Σ∗

Proof cont’d:
Inductive case (w = aw ′): Assume that P(w ′) holds. That is, for
all v ∈ Σ∗:

(IH): length(w ′v) = length(w ′) + length(v).

Then, for all a ∈ Σ, we have:

length((aw ′)v) = length(a(w ′v)) (concat.I)
= 1 + length(w ′v) (length.I)

= 1 + length(w ′) + length(v) (IH)
= length(aw ′) + length(v) (length.I)

So P(aw ′) holds.

We have P(λ) and for all w ′ ∈ Σ∗ and a ∈ Σ: P(w ′)→ P(aw ′).
Hence P(w) holds for all w ∈ Σ∗.

70

Example: Induction on Σ∗

Proof cont’d:
Inductive case (w = aw ′): Assume that P(w ′) holds. That is, for
all v ∈ Σ∗:

(IH): length(w ′v) = length(w ′) + length(v).

Then, for all a ∈ Σ, we have:

length((aw ′)v) = length(a(w ′v)) (concat.I)
= 1 + length(w ′v) (length.I)
= 1 + length(w ′) + length(v) (IH)

= length(aw ′) + length(v) (length.I)

So P(aw ′) holds.

We have P(λ) and for all w ′ ∈ Σ∗ and a ∈ Σ: P(w ′)→ P(aw ′).
Hence P(w) holds for all w ∈ Σ∗.

71

Example: Induction on Σ∗

Proof cont’d:
Inductive case (w = aw ′): Assume that P(w ′) holds. That is, for
all v ∈ Σ∗:

(IH): length(w ′v) = length(w ′) + length(v).

Then, for all a ∈ Σ, we have:

length((aw ′)v) = length(a(w ′v)) (concat.I)
= 1 + length(w ′v) (length.I)
= 1 + length(w ′) + length(v) (IH)
= length(aw ′) + length(v) (length.I)

So P(aw ′) holds.

We have P(λ) and for all w ′ ∈ Σ∗ and a ∈ Σ: P(w ′)→ P(aw ′).
Hence P(w) holds for all w ∈ Σ∗.

72

Example: Induction on Σ∗

Proof cont’d:
Inductive case (w = aw ′): Assume that P(w ′) holds. That is, for
all v ∈ Σ∗:

(IH): length(w ′v) = length(w ′) + length(v).

Then, for all a ∈ Σ, we have:

length((aw ′)v) = length(a(w ′v)) (concat.I)
= 1 + length(w ′v) (length.I)
= 1 + length(w ′) + length(v) (IH)
= length(aw ′) + length(v) (length.I)

So P(aw ′) holds.

We have P(λ) and for all w ′ ∈ Σ∗ and a ∈ Σ: P(w ′)→ P(aw ′).
Hence P(w) holds for all w ∈ Σ∗.

73

Example: Induction on Σ∗

Proof cont’d:
Inductive case (w = aw ′): Assume that P(w ′) holds. That is, for
all v ∈ Σ∗:

(IH): length(w ′v) = length(w ′) + length(v).

Then, for all a ∈ Σ, we have:

length((aw ′)v) = length(a(w ′v)) (concat.I)
= 1 + length(w ′v) (length.I)
= 1 + length(w ′) + length(v) (IH)
= length(aw ′) + length(v) (length.I)

So P(aw ′) holds.

We have P(λ) and for all w ′ ∈ Σ∗ and a ∈ Σ: P(w ′)→ P(aw ′).
Hence P(w) holds for all w ∈ Σ∗.

74

Example 2: Induction on Σ∗

Define reverse : Σ∗ → Σ∗:

(rev.B) reverse(λ) = λ,

(rev.I) reverse(a · w) = reverse(w) · a

75

Example 2: Induction on Σ∗

Theorem

For all w , v ∈ Σ∗, reverse(wv) = reverse(v) · reverse(w).

Proof: By induction on w ...
(B) reverse(λv) = reverse(v) (concat.B)

=reverse(v)λ (*)
=reverse(v)reverse(λ) (reverse.B)

(I) reverse((aw ′)v) = reverse(a(w ′v)) (concat.I)
= reverse(w ′v) · a (reverse.I)
= reverse(v)reverse(w ′) · a (IH)
= reverse(v)reverse(aw ′) (reverse.I)

76

Example 2: Induction on Σ∗

Theorem

For all w , v ∈ Σ∗, reverse(wv) = reverse(v) · reverse(w).

Proof: By induction on w ...

(B) reverse(λv) = reverse(v) (concat.B)
=reverse(v)λ (*)
=reverse(v)reverse(λ) (reverse.B)

(I) reverse((aw ′)v) = reverse(a(w ′v)) (concat.I)
= reverse(w ′v) · a (reverse.I)
= reverse(v)reverse(w ′) · a (IH)
= reverse(v)reverse(aw ′) (reverse.I)

77

Example 2: Induction on Σ∗

Theorem

For all w , v ∈ Σ∗, reverse(wv) = reverse(v) · reverse(w).

Proof: By induction on w ...
(B) reverse(λv) = reverse(v) (concat.B)

=reverse(v)λ (*)
=reverse(v)reverse(λ) (reverse.B)

(I) reverse((aw ′)v) = reverse(a(w ′v)) (concat.I)
= reverse(w ′v) · a (reverse.I)
= reverse(v)reverse(w ′) · a (IH)
= reverse(v)reverse(aw ′) (reverse.I)

78

Mutual Recursion

Mutual recursion is when two or more functions are defined in
terms of each other:

odd(n):
(B) if(n = 0): false
(R) else: even(n − 1)

even(n):
(B) if(n = 0): true
(R) else: odd(n − 1)

79

Mutual Recursion
Example

Alternative definition of Fibonacci numbers:

(B) f (1) = 1
(B) g(1) = 1
(R) f (n) = f (n − 1) + g(n − 1)
(R) g(n) = f (n − 1)

In matrix form:(
f (n)
g(n)

)
=

(
1 1
1 0

)(
f (n − 1)
g(n − 1)

)

Corollary: (
f (n)
g(n)

)
=

(
1 1
1 0

)n (
f (0)
g(0)

)

80

Mutual Recursion
Example

Alternative definition of Fibonacci numbers:

(B) f (1) = 1
(B) g(1) = 1
(R) f (n) = f (n − 1) + g(n − 1)
(R) g(n) = f (n − 1)

In matrix form:(
f (n)
g(n)

)
=

(
1 1
1 0

)(
f (n − 1)
g(n − 1)

)

Corollary: (
f (n)
g(n)

)
=

(
1 1
1 0

)n (
f (0)
g(0)

)
81

Summary of topics

Recursion

Recursive Data Types

Induction

Structural Induction

82

