COMP2111 Week 3 Term 1, 2024 Recursion and induction

Summary of topics

- Recursion
- Recursive Data Types
- Induction
- Structural Induction

Summary of topics

• Recursion

- Recursive Data Types
- Induction
- Structural Induction

Fundamental concept in Computer Science

- Recursion in algorithms: Solving problems by reducing to smaller cases
 - Factorial
 - Towers of Hanoi
 - Mergesort, Quicksort

Fundamental concept in Computer Science

- Recursion in algorithms: Solving problems by reducing to smaller cases
 - Factorial
 - Towers of Hanoi
 - Mergesort, Quicksort
- Recursion in data structures: Finite definitions of **arbitrarily large** objects
 - Natural numbers
 - Words
 - Linked lists
 - Formulas
 - Binary trees

Fundamental concept in Computer Science

- Recursion in algorithms: Solving problems by reducing to smaller cases
 - Factorial
 - Towers of Hanoi
 - Mergesort, Quicksort
- Recursion in data structures: Finite definitions of arbitrarily large objects
 - Natural numbers
 - Words
 - Linked lists
 - Formulas
 - Binary trees
- Analysis of recursion: Proving properties
 - Recursive sequences (e.g. Fibonacci sequence)
 - Structural induction

A recursive definition has base cases (B) and recursive cases (R):

$$\begin{array}{ll} (B) & 0! = 1 \\ (R) & (n+1)! = (n+1) \cdot n! \\ & & \text{fact}(n): \\ (B) & & \text{if}(n=0): 1 \\ (R) & & \text{else: } n * \text{fact}(n-1) \end{array}$$

Factorial is defined in terms of *smaller* instances of factorial.

A recursive definition has base cases (B) and recursive cases (R):

$$\begin{array}{ll} (B) & 0! = 1 \\ (R) & (n+1)! = (n+1) \cdot n! \\ & & \text{fact}(n): \\ (B) & & \text{if}(n=0): 1 \\ (R) & & \text{else: } n * \text{fact}(n-1) \end{array}$$

Factorial is defined in terms of *smaller* instances of factorial.

Question

Why do we need base cases in programming? Why do we need them in maths?

≛⊥⊥

- There are 3 towers (pegs).
- In disks of decreasing size are placed on the first tower.
- Every move, you take the top disk from one peg and put it on top of another peg.
- You win when all disks are on the middle tower.
- **o** Larger disks cannot be placed on of smaller disks.

The last tower can be used to temporarily hold disks.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへ⊙

Summary of topics

- Recursion
- Recursive Data Types
- Induction
- Structural Induction

Example: Natural numbers

A natural number is either 0 (B) or one more than a natural number (R).

Formally:

(B) $0 \in \mathbb{N}$ (R) If $n \in \mathbb{N}$ then $(n+1) \in \mathbb{N}$

This is an **inductive** definition of \mathbb{N} (aka a **recursive** definition): \mathbb{N} contains everything that can be constructed by finitely many applications of (*B*) and (*R*), and nothing else.

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

Example: Fibonacci numbers

The Fibonacci sequence starts $0, 1, 1, 2, 3, \ldots$ where, after 0, 1, each term is the sum of the previous two terms.

Formally, the set of Fibonacci numbers: $\mathbb{F} = \{F_n : n \in \mathbb{N}\}\)$, where the *n*-th Fibonacci number F_n is defined as:

(B)
$$F_0 = 0$$
,
(B) $F_1 = 1$,
(I) $F_n = F_{n-1} + F_{n-2}$

NB

Could also define the Fibonacci sequence as a function FIB : $\mathbb{N} \to \mathbb{F}$. Choice of perspective depends on what structure you view as your base object (ground type).

Example: Linked lists

Recall: A linked list is zero or more linked list nodes:

Example: Linked lists

Recall: A linked list is zero or more linked list nodes:

In C:	
<pre>struct node{</pre>	
int data;	
<pre>struct node *next;</pre>	
}	

Example: Linked lists

We can view the linked list **structure** abstractly. A linked list is either:

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへぐ

- (B) an empty list, or
- (R) an ordered pair (Data, List).

Example: Words over Σ

A word over an alphabet Σ is either λ (B) or a symbol from Σ followed by a word (R).

Formal definition of Σ^* :

- (B) λ ∈ Σ*
- (R) If $w \in \Sigma^*$ then $aw \in \Sigma^*$ for all $a \in \Sigma$

NB

This matches the recursive definition of a Linked List data type.

Example: Propositional formulas

A well-formed formula (wff) over a set of propositional variables, PROP is defined as:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- (B) \top is a wff
- (B) \perp is a wff
- (B) p is a wff for all $p \in PROP$
- (R) If φ is a wff then $\neg \varphi$ is a wff
- (R) If φ and ψ are wffs then:
 - $(\varphi \wedge \psi)$,
 - $(\varphi \lor \psi)$,
 - $(\varphi \rightarrow \psi)$, and
 - $(\varphi \leftrightarrow \psi)$ are wffs.

Recursive datatypes make recursive programming/functions easy.

Example The factorial function: $\begin{array}{c}
 fact(n):\\
 (B) & if(n=0):1\\
 (R) & else: n * fact(n-1)
\end{array}$

Recursive datatypes make recursive programming/functions easy.

Example Summing the first *n* natural numbers: $\begin{array}{c} sum(n):\\ (B) & if(n=0): 0\\ (R) & else: n + sum(n-1) \end{array}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Recursive datatypes make recursive programming/functions easy.

ExampleConcatenation of words (defining wv):For all $w, v \in \Sigma^*$ and $a \in \Sigma$:(B) $\lambda v = v$ (R)(aw)v = a(wv)

Recursive datatypes make recursive programming/functions easy.

Example Length of words: $\begin{array}{c} (B) & \text{length}(\lambda) = 0 \\ (R) & \text{length}(aw) = 1 + \text{length}(w) \end{array}$

Recursive datatypes make recursive programming/functions easy.

Example

"Evaluation" of a propositional formula

Summary of topics

- Recursion
- Recursive Data Types
- Induction
- Structural Induction

Recursive datatypes

Describe arbitrarily large objects in a finite way

Recursive functions

Define behaviour for these objects in a finite way

Induction

Reason about these objects in a finite way
Inductive Reasoning

Suppose we would like to reach a conclusion of the form P(x) for all x (of some type)

Inductive reasoning (as understood in philosophy) proceeds from examples.

E.g. From "This swan is white, that swan is white, in fact every swan I have seen so far is white"

Conclude: "Every Swan is white"

Inductive Reasoning

Suppose we would like to reach a conclusion of the form P(x) for all x (of some type)

Inductive reasoning (as understood in philosophy) proceeds from examples.

E.g. From "This swan is white, that swan is white, in fact every swan I have seen so far is white"

Conclude: "Every Swan is white"

NB

This may be a good way to discover hypotheses. But it is not a valid principle of reasoning!

Mathematical induction is a variant that is valid.

Mathematical Induction

Mathematical Induction is based not just on a set of examples, but also a rule for deriving new cases of P(x) from cases where P is known to hold.

General structure of reasoning by mathematical induction:

Base Case (B): $P(a_1), P(a_2), \ldots, P(a_n)$ for some small set of examples $a_1 \ldots a_n$ (often n = 1) **Inductive Step (I):** A general rule showing that if P(x) holds for some cases $x = x_1, \ldots, x_k$ then P(y) holds for some new case y, constructed in some way from x_1, \ldots, x_k .

Conclusion: By starting with $a_1 ldots a_n$ and repeatedly applying (I), we can construct all values in the domain.

Basic induction

Basic induction is this principle applied to the natural numbers.

Goal: Show P(n) holds for all $n \in \mathbb{N}$.

Approach: Show that: **Base case (B):** P(0) holds; and **Inductive case (I):** If P(k) holds then P(k + 1) holds.

Recall the recursive program:

Example

Summing the first *n* natural numbers:

ຣ

sum(n):if(n = 0): 0 else: n + sum(n - 1)

Another attempt:

Example

$$sum2(n)$$
:
return $n * (n+1)/2$

Induction proof guarantees that these programs will behave the

Let P(n) be the proposition that:

$$P(n): \sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

We will show that P(n) holds for all $n \in \mathbb{N}$ by induction on n.

Let P(n) be the proposition that:

$$P(n): \sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

We will show that P(n) holds for all $n \in \mathbb{N}$ by induction on n.

Proof. (B) P(0), i.e. $\sum_{i=1}^{0} i = \frac{0(0+1)}{2}$

Let P(n) be the proposition that:

$$P(n): \sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

We will show that P(n) holds for all $n \in \mathbb{N}$ by induction on n.

Proof. (B) *P*(0), i.e. $\sum_{i=1}^{6} i = \frac{0(0+1)}{2}$ (1) $\forall k > 0 (P(k) \to P(k+1))$, i.e. $\sum_{k=1}^{k} i = \frac{k(k+1)}{2} \to \sum_{k=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$

(proof?)

44

Example (cont'd)

Proof.

Inductive step (I):

$$\sum_{i=0}^{k+1} i = \left(\sum_{i=0}^{k} i\right) + (k+1)$$

= $\frac{k(k+1)}{2} + (k+1)$ (by the inductive hypothesis)
= $\frac{k(k+1) + 2(k+1)}{2}$
= $\frac{(k+1)(k+2)}{2}$

Variations

- **1** Induction from *m* upwards
- **2** Induction steps >1
- Strong induction
- Backward induction
- Structural induction

Induction From *m* **Upwards**

If
(B)
$$P(m)$$

(I) $\forall k \ge m (P(k) \rightarrow P(k+1))$
then
(C) $\forall n \ge m (P(n))$

Theorem. For all $n \ge 1$, the number $8^n - 2^n$ is divisible by 6.

(B) $8^{1} - 2^{1}$ is divisible by 6 (I) if $8^{k} - 2^{k}$ is divisible by 6, then so is $8^{k+1} - 2^{k+1}$, for all $k \ge 1$

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

Prove (I) using the "trick" to rewrite 8^{k+1} as $8 \cdot (8^k - 2^k + 2^k)$ which allows you to apply the IH on $8^k - 2^k$

Induction Steps $\ell > 1$

If
(B)
$$P(m)$$

(I) $P(k) \rightarrow P(k + \ell)$ for all $k \ge m$
then
(C) $P(n)$ for every ℓ 'th $n \ge m$

Every 4th Fibonacci number is divisible by 3.

(B) $F_4 = 3$ is divisible by 3 (I) if $3 | F_k$, then $3 | F_{k+4}$, for all $k \ge 4$

Prove (I) by rewriting F_{k+4} in such a way that you can apply the IH on F_k

Strong Induction

This is a version in which the inductive hypothesis is stronger. Rather than using the fact that P(k) holds for a single value, we use *all* values up to k.

If (B) P(m)(I) $[P(m) \land P(m+1) \land \ldots \land P(k)] \rightarrow P(k+1)$ for all $k \ge m$ then (C) P(n), for all $n \ge m$

Claim: All integers ≥ 2 can be written as a product of primes.

- (B) 2 is a product of primes
- (I) If all x with $2 \le x \le k$ can be written as a product of primes, then k + 1 can be written as a product of primes, for all $k \ge 2$

Proof for (I)?

Negative Integers, Backward Induction

NB

Induction can be conducted over any subset of \mathbb{Z} with least element. Thus m can be negative; eg. base case $m = -10^6$.

NB

One can apply induction in the 'opposite' direction $p(m) \rightarrow p(m-1)$. It means considering the integers with the opposite ordering where the next number after n is n - 1. Such induction would be used to prove some p(n) for all $n \leq m$.

NB

Sometimes one needs to reason about all integers \mathbb{Z} . This requires two separate simple induction proofs: one for \mathbb{N} , another for $-\mathbb{N}$. They both would start from some initial values, which could be the same, e.g. zero. Then the first proof would proceed through positive integers; the second proof through negative integers.

Summary of topics

- Recursion
- Recursive Data Types
- Induction
- Structural Induction

Structural Induction

Basic induction allows us to prove properties for **all natural numbers**. The induction scheme (layout) uses the recursive definition of \mathbb{N} .

 (B) $0 \in \mathbb{N}$ (B) P(0)

 (R) If $n \in \mathbb{N}$ then
 (I) $P(k) \rightarrow$
 $(n+1) \in \mathbb{N}$ P(k+1)

Structural Induction

Basic induction allows us to prove properties for **all natural numbers**. The induction scheme (layout) uses the recursive definition of \mathbb{N} .

(B) $0 \in \mathbb{N}$	(B) <i>P</i> (0)
(R) If $n \in \mathbb{N}$ then	(I) $P(k) \rightarrow$
$(n+1)\in\mathbb{N}$	P(k+1)

NB

Every clause in the induction principle is there because of a similar-looking clause in the (recursive) definition!

The same connection between recursive definition and induction principle applies not just to \mathbb{N} , but to any **well-founded strict** poset.

The basic approach is always the same. To prove $\forall x.P(x)$, we show:

(B) P holds for all minimal objects
(I) If P holds for all predecessors of x, then P(x).

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

57

Strict poset

A strict poset is a pair (S, \prec) consisting of a set S and a relation $\prec \subseteq S \times S$ such that \prec is anti-reflexive, anti-symmetric and transitive.

Example

 $(\mathbb{N}, <)$ is a strict poset.

Example

 (\mathbb{N}, \leq) is a non-strict poset. (why?)

A (**non-strict**) partial order is reflexive, anti-symmetric and transitive.

Well-founded?

A strict poset (S, <) is **well-founded** if there are no infinitely descending chains:

 $\cdots < r_{k+2} < r_{k+1} < r_k$

Example

 $(\mathbb{N}, <)$ is well-founded: every chain starting from a number *n* ends in 0 after finitely many steps.

Example

 $(\mathbb{Z}, <)$ is **not** well-founded (why?)

Example

 $(\mathbb{R}^+, <)$ is **not** well-founded (why?)

Recall definition of Σ^* : $\lambda \in \Sigma^*$ If $w \in \Sigma^*$ then $aw \in \Sigma^*$ for all $a \in \Sigma$

Structural induction on Σ^* :

Goal: Show P(w) holds for all $w \in \Sigma^*$.

Approach: Show that: **Base case (B):** $P(\lambda)$ holds; and **Inductive case (I):** If P(w) holds then P(aw) holds for all $a \in \Sigma$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Recall:

```
Formal definition of \Sigma^*:

\lambda \in \Sigma^*

If w \in \Sigma^* then aw \in \Sigma^* for all a \in \Sigma
```

```
Formal definition of concatenation:

(concat.B) \lambda v = v

(concat.I) (aw)v = a(wv)
```

```
Formal definition of length:
(length.B) length(\lambda) = 0
(length.l) length(aw) = 1 + \text{length}(w)
```

Recall:

```
Formal definition of \Sigma^*:

\lambda \in \Sigma^*

If w \in \Sigma^* then aw \in \Sigma^* for all a \in \Sigma
```

```
Formal definition of concatenation:

(concat.B) \lambda v = v

(concat.I) (aw)v = a(wv)
```

```
Formal definition of length:
(length.B) length(\lambda) = 0
(length.l) length(aw) = 1 + \text{length}(w)
```

Prove:

```
length(wv) = length(w) + length(v)
```

Let P(w) be the proposition that, for all $v \in \Sigma^*$:

length(wv) = length(w) + length(v).

We will show that P(w) holds for all $w \in \Sigma^*$ by structural induction on w.

Proof:

Let P(w) be the proposition that, for all $v \in \Sigma^*$:

```
length(wv) = length(w) + length(v).
```

イロト イロト イヨト イヨト ヨー わへの

We will show that P(w) holds for all $w \in \Sigma^*$ by structural induction on w.

Proof: Base case $(w = \lambda)$: length $(\lambda v) =$

Let P(w) be the proposition that, for all $v \in \Sigma^*$:

```
length(wv) = length(w) + length(v).
```

We will show that P(w) holds for all $w \in \Sigma^*$ by structural induction on w.

Proof: **Base case (** $w = \lambda$ **):** $length(\lambda v) = length(v)$ (concat.B)

Let P(w) be the proposition that, for all $v \in \Sigma^*$:

```
length(wv) = length(w) + length(v).
```

We will show that P(w) holds for all $w \in \Sigma^*$ by structural induction on w.

Proof: **Base case (** $w = \lambda$ **):** $length(\lambda v) = length(v)$ (concat.B) = 0 + length(v)

Let P(w) be the proposition that, for all $v \in \Sigma^*$:

```
length(wv) = length(w) + length(v).
```

We will show that P(w) holds for all $w \in \Sigma^*$ by structural induction on w.

Proof: **Base case (** $w = \lambda$ **):** $length(\lambda v) = length(v)$ (concat.B) = 0 + length(v)= length(w) + length(v)(length.B)

Proof cont'd: **Inductive case (**w = aw'**):** Assume that P(w') holds. That is, for all $v \in \Sigma^*$:

(IH): $\operatorname{length}(w'v) = \operatorname{length}(w') + \operatorname{length}(v).$

イロト イロト イヨト イヨト ヨー わへの

Then, for all $a \in \Sigma$, we have:

length((aw')v) =

Proof cont'd: **Inductive case (**w = aw'**):** Assume that P(w') holds. That is, for all $v \in \Sigma^*$:

(IH): $\operatorname{length}(w'v) = \operatorname{length}(w') + \operatorname{length}(v).$

Then, for all $a \in \Sigma$, we have:

length((aw')v) = length(a(w'v))(concat.l)

Proof cont'd: **Inductive case (**w = aw'**):** Assume that P(w') holds. That is, for all $v \in \Sigma^*$:

(IH): $\operatorname{length}(w'v) = \operatorname{length}(w') + \operatorname{length}(v).$

Then, for all $a \in \Sigma$, we have:

length((aw')v) = length(a(w'v))= 1 + length(w'v)

(concat.l) (length.l)

イロト イロト イヨト イヨト ヨー わへの

Proof cont'd: **Inductive case (**w = aw'**):** Assume that P(w') holds. That is, for all $v \in \Sigma^*$:

(IH): $\operatorname{length}(w'v) = \operatorname{length}(w') + \operatorname{length}(v).$

Then, for all $a \in \Sigma$, we have:

$$\begin{array}{ll} \operatorname{length}((\mathit{aw'})v) &= \operatorname{length}(\mathit{a}(\mathit{w'v})) & (\operatorname{concat.l}) \\ &= 1 + \operatorname{length}(\mathit{w'v}) & (\operatorname{length.l}) \\ &= 1 + \operatorname{length}(\mathit{w'}) + \operatorname{length}(v) & (\operatorname{IH}) \end{array}$$

Proof cont'd: **Inductive case (**w = aw'**):** Assume that P(w') holds. That is, for all $v \in \Sigma^*$:

(IH): $\operatorname{length}(w'v) = \operatorname{length}(w') + \operatorname{length}(v).$

Then, for all $a \in \Sigma$, we have:

$$\begin{aligned} \mathsf{length}((\mathit{aw'})v) &= \mathsf{length}(\mathit{a}(\mathit{w'v})) & (\mathsf{concat.l}) \\ &= 1 + \mathsf{length}(\mathit{w'v}) & (\mathsf{length.l}) \\ &= 1 + \mathsf{length}(\mathit{w'}) + \mathsf{length}(v) & (\mathsf{IH}) \\ &= \mathsf{length}(\mathit{aw'}) + \mathsf{length}(v) & (\mathsf{length.l}) \end{aligned}$$
Proof cont'd: **Inductive case (**w = aw'**):** Assume that P(w') holds. That is, for all $v \in \Sigma^*$:

(IH): $\operatorname{length}(w'v) = \operatorname{length}(w') + \operatorname{length}(v).$

Then, for all $a \in \Sigma$, we have:

$$\begin{aligned} \mathsf{length}((\mathit{aw'})v) &= \mathsf{length}(\mathit{a}(\mathit{w'v})) & (\mathsf{concat.l}) \\ &= 1 + \mathsf{length}(\mathit{w'v}) & (\mathsf{length.l}) \\ &= 1 + \mathsf{length}(\mathit{w'}) + \mathsf{length}(v) & (\mathsf{IH}) \\ &= \mathsf{length}(\mathit{aw'}) + \mathsf{length}(v) & (\mathsf{length.l}) \end{aligned}$$

So P(aw') holds.

Proof cont'd: **Inductive case (**w = aw'**):** Assume that P(w') holds. That is, for all $v \in \Sigma^*$:

(IH): $\operatorname{length}(w'v) = \operatorname{length}(w') + \operatorname{length}(v).$

Then, for all $a \in \Sigma$, we have:

$$\begin{aligned} \mathsf{length}((\mathit{aw'})v) &= \mathsf{length}(\mathit{a}(\mathit{w'v})) & (\mathsf{concat.l}) \\ &= 1 + \mathsf{length}(\mathit{w'v}) & (\mathsf{length.l}) \\ &= 1 + \mathsf{length}(\mathit{w'}) + \mathsf{length}(v) & (\mathsf{IH}) \\ &= \mathsf{length}(\mathit{aw'}) + \mathsf{length}(v) & (\mathsf{length.l}) \end{aligned}$$

So P(aw') holds.

We have $P(\lambda)$ and for all $w' \in \Sigma^*$ and $a \in \Sigma$: $P(w') \to P(aw')$. Hence P(w) holds for all $w \in \Sigma^*$.

Define reverse : $\Sigma^* \to \Sigma^*$: (rev.B) reverse(λ) = λ , (rev.I) reverse($a \cdot w$) = reverse(w) $\cdot a$

Theorem

For all $w, v \in \Sigma^*$, $reverse(wv) = reverse(v) \cdot reverse(w)$.

Theorem

For all $w, v \in \Sigma^*$, $reverse(wv) = reverse(v) \cdot reverse(w)$.

Proof: By induction on w...

Theorem

For all $w, v \in \Sigma^*$, $reverse(wv) = reverse(v) \cdot reverse(w)$.

Proof:	By induction on	w	
(B)	reverse(λv)	= reverse(v)	(concat.B)
		$=$ reverse(v) λ	(*)
		$=$ reverse(v)reverse(λ)	(reverse.B)
(I)	reverse $((aw')v)$	= reverse($a(w'v)$)	(concat.l)
		$=$ reverse $(w'v) \cdot a$	(reverse.I)
		$=$ reverse(v)reverse(w') \cdot a	(IH)
		= reverse(v)reverse(aw')	(reverse.I)

Mutual Recursion

Mutual recursion is when two or more functions are defined in terms of each other:

 $(B) \quad if(n = 0): false$ $(R) \quad else: even(n-1)$ $(B) \quad if(n = 0): true$ $(R) \quad else: odd(n-1)$

Mutual Recursion

Example

Alternative definition of Fibonacci numbers:

$$\begin{array}{ll} (B) & f(1) = 1 \\ (B) & g(1) = 1 \\ (R) & f(n) = f(n-1) + g(n-1) \\ (R) & g(n) = f(n-1) \end{array}$$

Mutual Recursion

Example

Alternative definition of Fibonacci numbers:

$$\begin{array}{ll} (B) & f(1) = 1 \\ (B) & g(1) = 1 \\ (R) & f(n) = f(n-1) + g(n-1) \\ (R) & g(n) = f(n-1) \end{array}$$

In matrix form:

$$\left(\begin{array}{c}f(n)\\g(n)\end{array}\right) = \left(\begin{array}{c}1&1\\1&0\end{array}\right) \left(\begin{array}{c}f(n-1)\\g(n-1)\end{array}\right)$$

Corollary:

$$\left(\begin{array}{c}f(n)\\g(n)\end{array}\right) = \left(\begin{array}{c}1&1\\1&0\end{array}\right)^n \left(\begin{array}{c}f(0)\\g(0)\end{array}\right)$$

Summary of topics

- Recursion
- Recursive Data Types
- Induction
- Structural Induction