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Recursion

Fundamental concept in Computer Science

Recursion in algorithms: Solving problems by reducing to
smaller cases

Factorial
Towers of Hanoi
Mergesort, Quicksort

Recursion in data structures: Finite definitions of arbitrarily
large objects

Natural numbers
Words
Linked lists
Formulas
Binary trees

Analysis of recursion: Proving properties

Recursive sequences (e.g. Fibonacci sequence)
Structural induction
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Recursion

A recursive definition has base cases (B) and recursive cases (R):

(B) 0! = 1
(R) (n + 1)! = (n + 1) · n!

fact(n):
(B) if(n = 0): 1
(R) else: n ∗ fact(n − 1)

Factorial is defined in terms of smaller instances of factorial.

Question

Why do we need base cases in programming?
Why do we need them in maths?
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Example: Towers of Hanoi

1 There are 3 towers (pegs).

2 n disks of decreasing size are placed on the first tower.

3 Every move, you take the top disk from one peg and put it on
top of another peg.

4 You win when all disks are on the middle tower.

5 Larger disks cannot be placed on of smaller disks.

The last tower can be used to temporarily hold disks.
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Example: Natural numbers

A natural number is either 0 (B) or one more than a natural
number (R).

Formally:

(B) 0 ∈ N
(R) If n ∈ N then (n + 1) ∈ N

This is an inductive definition of N (aka a recursive definition):
N contains everything that can be constructed by finitely many
applications of (B) and (R), and nothing else.
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Example: Fibonacci numbers

The Fibonacci sequence starts 0, 1, 1, 2, 3, . . . where, after 0, 1,
each term is the sum of the previous two terms.

Formally, the set of Fibonacci numbers: F = {Fn : n ∈ N}, where
the n-th Fibonacci number Fn is defined as:

(B) F0 = 0,

(B) F1 = 1,

(I) Fn = Fn−1 + Fn−2

NB

Could also define the Fibonacci sequence as a function
fib : N→ F. Choice of perspective depends on what structure you
view as your base object (ground type).
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Example: Linked lists

Recall: A linked list is zero or more linked list nodes:

head

· · · ⊥

In C:

struct node{
int data;

struct node *next;

}
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Example: Linked lists

We can view the linked list structure abstractly. A linked list is
either:

(B) an empty list, or

(R) an ordered pair (Data, List).
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Example: Words over Σ

A word over an alphabet Σ is either λ (B) or a symbol from Σ
followed by a word (R).

Formal definition of Σ∗:

(B) λ ∈ Σ∗

(R) If w ∈ Σ∗ then aw ∈ Σ∗ for all a ∈ Σ

NB

This matches the recursive definition of a Linked List data type.
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Example: Propositional formulas

A well-formed formula (wff) over a set of propositional variables,
Prop is defined as:

(B) > is a wff

(B) ⊥ is a wff

(B) p is a wff for all p ∈ Prop

(R) If ϕ is a wff then ¬ϕ is a wff

(R) If ϕ and ψ are wffs then:

(ϕ ∧ ψ),
(ϕ ∨ ψ),
(ϕ→ ψ), and
(ϕ↔ ψ) are wffs.
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Programming over recursive datatypes

Recursive datatypes make recursive programming/functions easy.

Example

The factorial function:

fact(n):
(B) if(n = 0): 1
(R) else: n ∗ fact(n − 1)
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Programming over recursive datatypes

Recursive datatypes make recursive programming/functions easy.

Example

Summing the first n natural numbers:

sum(n):
(B) if(n = 0): 0
(R) else: n + sum(n − 1)
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Programming over recursive datatypes

Recursive datatypes make recursive programming/functions easy.

Example

Concatenation of words (defining wv):

For all w , v ∈ Σ∗ and a ∈ Σ :
(B) λv = v
(R) (aw)v = a(wv)
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Programming over recursive datatypes

Recursive datatypes make recursive programming/functions easy.

Example

Length of words:

(B) length(λ) = 0
(R) length(aw) = 1 + length(w)
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Programming over recursive datatypes

Recursive datatypes make recursive programming/functions easy.

Example

“Evaluation” of a propositional formula
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Recursive datatypes
Describe arbitrarily large objects in a finite way

Recursive functions
Define behaviour for these objects in a finite way

Induction
Reason about these objects in a finite way
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Inductive Reasoning

Suppose we would like to reach a conclusion of the form
P(x) for all x (of some type)

Inductive reasoning (as understood in philosophy) proceeds from
examples.
E.g. From “This swan is white, that swan is white, in fact every
swan I have seen so far is white”
Conclude: “Every Swan is white”

NB

This may be a good way to discover hypotheses.
But it is not a valid principle of reasoning!

Mathematical induction is a variant that is valid.
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Mathematical Induction

Mathematical Induction is based not just on a set of examples, but
also a rule for deriving new cases of P(x) from cases where P is
known to hold.
General structure of reasoning by mathematical induction:

Base Case (B): P(a1),P(a2), . . . ,P(an) for some small set of
examples a1 . . . an (often n = 1)
Inductive Step (I): A general rule showing that if P(x) holds for
some cases x = x1, . . . , xk then P(y) holds for some new case y ,
constructed in some way from x1, . . . , xk .

Conclusion: By starting with a1 . . . an and repeatedly applying (I),
we can construct all values in the domain.
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Basic induction

Basic induction is this principle applied to the natural numbers.

Goal: Show P(n) holds for all n ∈ N.

Approach: Show that:

Base case (B): P(0) holds; and

Inductive case (I): If P(k) holds then P(k + 1) holds.
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Example
Recall the recursive program:

Example

Summing the first n natural numbers:

sum(n):
if(n = 0): 0
else: n + sum(n − 1)

Another attempt:

Example

sum2(n):
return n ∗ (n + 1)/2

Induction proof guarantees that these programs will behave the
same.41



Example
Let P(n) be the proposition that:

P(n) :
n∑

i=0

i =
n(n + 1)

2
.

We will show that P(n) holds for all n ∈ N by induction on n.

Proof.

(B) P(0), i.e.
0∑

i=0

i =
0(0 + 1)

2

(I) ∀k ≥ 0 (P(k)→ P(k + 1)), i.e.

k∑
i=0

i =
k(k + 1)

2
→

k+1∑
i=0

i =
(k + 1)(k + 2)

2

(proof?)
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Example (cont’d)

Proof.

Inductive step (I):

k+1∑
i=0

i =

(
k∑

i=0

i

)
+ (k + 1)

=
k(k + 1)

2
+ (k + 1) (by the inductive hypothesis)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
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Variations

1 Induction from m upwards

2 Induction steps >1

3 Strong induction

4 Backward induction

5 Structural induction
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Induction From m Upwards

If
(B) P(m)
(I) ∀k ≥ m (P(k)→ P(k + 1))
then
(C) ∀n ≥ m (P(n))
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Example

Theorem. For all n ≥ 1, the number 8n − 2n is divisible by 6.

(B) 81 − 21 is divisible by 6
(I) if 8k − 2k is divisible by 6, then so is 8k+1 − 2k+1, for all k ≥ 1

Prove (I) using the “trick” to rewrite 8k+1 as 8 · (8k − 2k + 2k)
which allows you to apply the IH on 8k − 2k
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Induction Steps ` > 1

If
(B) P(m)
(I) P(k)→ P(k + `) for all k ≥ m
then
(C) P(n) for every `’th n ≥ m
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Example

Every 4th Fibonacci number is divisible by 3.

(B) F4 = 3 is divisible by 3
(I) if 3 | Fk , then 3 | Fk+4, for all k ≥ 4

Prove (I) by rewriting Fk+4 in such a way
that you can apply the IH on Fk
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Strong Induction

This is a version in which the inductive hypothesis is stronger.
Rather than using the fact that P(k) holds for a single value, we
use all values up to k.

If
(B) P(m)
(I) [P(m) ∧ P(m + 1) ∧ . . . ∧ P(k)]→ P(k + 1) for all k ≥ m
then
(C) P(n), for all n ≥ m
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Example

Claim: All integers ≥ 2 can be written as a product of primes.

(B) 2 is a product of primes
(I) If all x with 2 ≤ x ≤ k can be written as a product of primes,

then k + 1 can be written as a product of primes, for all k ≥ 2

Proof for (I)?
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Negative Integers, Backward Induction
NB

Induction can be conducted over any subset of Z with least
element. Thus m can be negative; eg. base case m = −106.

NB

One can apply induction in the ‘opposite’ direction
p(m)→ p(m − 1). It means considering the integers with the
opposite ordering where the next number after n is n − 1. Such
induction would be used to prove some p(n) for all n ≤ m.

NB

Sometimes one needs to reason about all integers Z. This requires
two separate simple induction proofs: one for N, another for −N.
They both would start from some initial values, which could be the
same, e.g. zero. Then the first proof would proceed through
positive integers; the second proof through negative integers.
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Structural Induction

Basic induction allows us to prove properties for all natural
numbers. The induction scheme (layout) uses the recursive
definition of N.

(B) 0 ∈ N
(R) If n ∈ N then

(n + 1) ∈ N

(B) P(0)

(I) P(k)→
P(k + 1).

NB

Every clause in the induction principle is there because of a
similar-looking clause in the (recursive) definition!
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The same connection between recursive definition and induction
principle applies not just to N, but to any well-founded strict
poset.

The basic approach is always the same. To prove ∀x .P(x), we
show:

(B) P holds for all minimal objects

(I) If P holds for all predecessors of x , then P(x).
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Strict poset

A strict poset is a pair (S ,≺) consisting of a set S and a relation
≺⊆ S × S such that ≺ is anti-reflexive, anti-symmetric and
transitive.

Example

(N, <) is a strict poset.

Example

(N,≤) is a non-strict poset. (why?)

A (non-strict) partial order is reflexive, anti-symmetric and
transitive.
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Well-founded?
A strict poset (S , <) is well-founded if there are no infinitely
descending chains:

· · · < rk+2 < rk+1 < rk

Example

(N, <) is well-founded: every chain starting from a number n ends
in 0 after finitely many steps.

Example

(Z, <) is not well-founded (why?)

Example

(R+, <) is not well-founded (why?)
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Example: Induction on Σ∗

Recall definition of Σ∗:

λ ∈ Σ∗

If w ∈ Σ∗ then aw ∈ Σ∗ for all a ∈ Σ

Structural induction on Σ∗:

Goal: Show P(w) holds for all w ∈ Σ∗.

Approach: Show that:

Base case (B): P(λ) holds; and

Inductive case (I): If P(w) holds then P(aw) holds for all
a ∈ Σ.
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Example: Induction on Σ∗

Recall:

Formal definition of Σ∗:

λ ∈ Σ∗

If w ∈ Σ∗ then aw ∈ Σ∗ for all a ∈ Σ

Formal definition of concatenation:

(concat.B) λv = v
(concat.I) (aw)v = a(wv)

Formal definition of length:

(length.B) length(λ) = 0
(length.I) length(aw) = 1 + length(w)

Prove:

length(wv) = length(w) + length(v)
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Example: Induction on Σ∗

Let P(w) be the proposition that, for all v ∈ Σ∗:

length(wv) = length(w) + length(v).

We will show that P(w) holds for all w ∈ Σ∗ by structural
induction on w .

Proof:

Base case (w = λ):

length(λv) =

length(v) (concat.B)
= 0 + length(v)
= length(w) + length(v) (length.B)
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Example: Induction on Σ∗

Proof cont’d:
Inductive case (w = aw ′): Assume that P(w ′) holds. That is, for
all v ∈ Σ∗:

(IH): length(w ′v) = length(w ′) + length(v).

Then, for all a ∈ Σ, we have:

length((aw ′)v) =

length(a(w ′v)) (concat.I)
= 1 + length(w ′v) (length.I)
= 1 + length(w ′) + length(v) (IH)
= length(aw ′) + length(v) (length.I)

So P(aw ′) holds.

We have P(λ) and for all w ′ ∈ Σ∗ and a ∈ Σ: P(w ′)→ P(aw ′).
Hence P(w) holds for all w ∈ Σ∗.
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Example 2: Induction on Σ∗

Define reverse : Σ∗ → Σ∗:

(rev.B) reverse(λ) = λ,

(rev.I) reverse(a · w) = reverse(w) · a
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Example 2: Induction on Σ∗

Theorem

For all w , v ∈ Σ∗, reverse(wv) = reverse(v) · reverse(w).

Proof: By induction on w ...
(B) reverse(λv) = reverse(v) (concat.B)

=reverse(v)λ (*)
=reverse(v)reverse(λ) (reverse.B)

(I) reverse((aw ′)v) = reverse(a(w ′v)) (concat.I)
= reverse(w ′v) · a (reverse.I)
= reverse(v)reverse(w ′) · a (IH)
= reverse(v)reverse(aw ′) (reverse.I)

76



Example 2: Induction on Σ∗

Theorem

For all w , v ∈ Σ∗, reverse(wv) = reverse(v) · reverse(w).

Proof: By induction on w ...

(B) reverse(λv) = reverse(v) (concat.B)
=reverse(v)λ (*)
=reverse(v)reverse(λ) (reverse.B)

(I) reverse((aw ′)v) = reverse(a(w ′v)) (concat.I)
= reverse(w ′v) · a (reverse.I)
= reverse(v)reverse(w ′) · a (IH)
= reverse(v)reverse(aw ′) (reverse.I)

77



Example 2: Induction on Σ∗

Theorem

For all w , v ∈ Σ∗, reverse(wv) = reverse(v) · reverse(w).

Proof: By induction on w ...
(B) reverse(λv) = reverse(v) (concat.B)

=reverse(v)λ (*)
=reverse(v)reverse(λ) (reverse.B)

(I) reverse((aw ′)v) = reverse(a(w ′v)) (concat.I)
= reverse(w ′v) · a (reverse.I)
= reverse(v)reverse(w ′) · a (IH)
= reverse(v)reverse(aw ′) (reverse.I)

78



Mutual Recursion

Mutual recursion is when two or more functions are defined in
terms of each other:

odd(n):
(B) if(n = 0): false
(R) else: even(n − 1)

even(n):
(B) if(n = 0): true
(R) else: odd(n − 1)
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Mutual Recursion
Example

Alternative definition of Fibonacci numbers:

(B) f (1) = 1
(B) g(1) = 1
(R) f (n) = f (n − 1) + g(n − 1)
(R) g(n) = f (n − 1)

In matrix form:(
f (n)
g(n)

)
=

(
1 1
1 0

)(
f (n − 1)
g(n − 1)

)

Corollary: (
f (n)
g(n)

)
=

(
1 1
1 0

)n (
f (0)
g(0)

)
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Mutual Recursion
Example

Alternative definition of Fibonacci numbers:

(B) f (1) = 1
(B) g(1) = 1
(R) f (n) = f (n − 1) + g(n − 1)
(R) g(n) = f (n − 1)

In matrix form:(
f (n)
g(n)

)
=

(
1 1
1 0

)(
f (n − 1)
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)
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f (n)
g(n)

)
=

(
1 1
1 0

)n (
f (0)
g(0)

)
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Summary of topics

Recursion

Recursive Data Types

Induction

Structural Induction
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